Clay Bricks

Clay bricks use Chamotte that the fire clay is calcinated as the main material. These bricks consist of fire clay and binder. The chemical components of these bricks are SiO2 and Al2O3. (Al2O3=25~40%) fireclay bricks are cheap so that they are used for all kinds of industrial furnaces. The main applications are the low temperature parts such as blast furnaces and hot blast furnaces,

waste incinerators and glass melting furnaces. Due to the scale-up of a variety of industrial furnaces and severity of operating conditions, super dense clay bricks that made of more refined chamotte being calcinated at high temperature are applied more than before.

Specifications:

	General	Firebricks	Firebricks	Fire bricks	Firebricks	Firebricks	Low pore
	clay fire	for	for	for	for the	for	fire
Item	bricks	blast	hot-blast	pouring	lining of	steel	bricks
		furnace	stove		temming	pouring	
					ladle		
						SN-40	
Brand	N-2a	GN-42	RN-42	JZN-40	CN-40	XN-40 KN-40	DN-40
						ZN-40	
Al2O3, % min	42	42	42	40	40	40	42
Fe2O3, % max		1.7					
Refractoriness	1720	730 1750	1750	1710	1730	1710	1730
(°C) min	1/30					1710	
Refractoriness under	1250	1420	1400		1400	1370	1390
load of 0.2Mpa(℃) min	1350	1430	1400			(SN-40, KN-40)	
Apparent porosity, % max	24	16	24	17-25	19	15-23 (SN-40)	15
						22 (KN-40)	
						15-25(XN-40)	
						23(ZN-40)	
	+0.1	0	0	+0.1	0	0	+0.1
Linear change	- 0.5	- 0.3	-0.4	- 0.3	- 0.3	- 0.3	-0.3
on reburning, %	1400℃X	1450℃ X	1450℃X	1350℃ X	1400℃ X	1350℃ X 2h	1400°C X
	2h	2h	2h	2h	2h	(XN-40)	2h
Cold Crushing	25	49.0	29.4		34.3	19.6	39
strength MPa min						(ZN-40)	